Prof. Engen Investigates Protein Conformation Using Novel Hydrogen/Deuterium Exchange Technique on Waters Synapt High Definition MS (HDMS) System

MILFORD, Mass., Sept. 1 /PRNewswire-FirstCall/ -- Waters Corporation (NYSE: WAT) announced today that the Analytical Chemistry Division of the American Chemical Society presented Prof. John R. Engen of Northeastern University with the Arthur Findeis Award for Achievements by a Young Analytical Scientist. Through a collaboration with Waters Corporation, Prof. Engen has pioneered the combined use of hydrogen-deuterium (H/D) exchange technology, UltraPerformance LC(R) and ion mobility mass spectrometry to better understand the conformation, or the folded three-dimensionality, of proteins that are thought to play a major role in some diseases. Prof. Engen received his award at a ceremony at the ACS National Meeting in Washington on August 16.

By being able to form a better three-dimensional picture of these proteins and how they move and react with other proteins, scientists are able to better understand the relationship between protein function and protein structure and, it is hoped, gain new perspectives on how diseases begin and progress. Prof. Engen is an Associate Professor of Chemistry & Chemical Biology and a Faculty Fellow at Northeastern University's Barnett Institute of Chemical and Biological Analysis.

Proteins are carefully structured, three-dimensional, long-chain molecules that when properly folded regulate normal bodily functions. Several high profile diseases including Alzheimer's, Creuzfeldt-Jakob's, and Parkinson's can develop when certain proteins become misfolded, causing a chain of events that can lead to disease symptoms. Thus understanding how a protein achieves its folded state is important. Mass spectrometry is unique in its ability to monitor individual proteins and protein complexes.

Prof. Engen has published extensively on the H/D technique, most recently in the Proceedings of the National Academy of Sciences, and in a feature article for Analytical Chemistry. Waters and Prof. Engen's laboratory at the Barnett Institute for Chemical and Biological Analysis entered into a scientific collaboration in 2007. To further Prof. Engen's experimental technique, Waters engineers constructed a specially-designed programmable cooling chamber for the Waters(R) nanoACQUITY(R) UPLC System, recently described in Analytical Chemistry.

Waters introduced the SYNAPT(TM) High Definition MS (TM) (HDMS(TM)) System at the American Society of Mass Spectrometry annual meeting in Seattle in June of 2006. It is the first commercially-available mass spectrometer with the ability to analyze ions by their size, shape and charge in addition to mass.

About Waters Corporation
Waters Corporation creates business advantage for laboratory-dependent organizations by delivering practical and sustainable innovation to enable
significant advancements in such areas as healthcare delivery, environmental management, food safety and water quality worldwide.

Pioneering a connected portfolio of separations science, laboratory information management, mass spectrometry and thermal analysis, Waters technology breakthroughs and laboratory solutions provide an enduring platform for customer success.

With revenue of $1.58 billion in 2008 and 5,000 employees, Waters is driving scientific discovery and operational excellence for customers worldwide.

Waters, SYNAPT, UPLC, UltraPerformance LC, nanoACQUITY, HDMS, and High Definition MS are trademarks of Waters Corporation.

SOURCE Waters Corporation

Brian J. Murphy of Waters Corporation, +1-508-482-2614, brian_j_murphy@waters.com

© Thomson Reuters 2009. All rights reserved. Users may download and print extracts of content from this website for their own personal and non-commercial use only. Republication or redistribution of Thomson Reuters content, including by framing or similar means, is expressly prohibited without the prior written consent of Thomson Reuters. Thomson Reuters and its logo are registered trademarks or trademarks of the Thomson Reuters group of companies around the world.

Thomson Reuters journalists are subject to an Editorial Handbook which requires fair presentation and disclosure of relevant interests.